skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ford, Trent"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. In recent years, extreme droughts in the United States have increased in frequency and severity, underlining a need to improve our understanding of vegetation resilience and adaptation. Flash droughts are extreme events marked by the rapid dry down of soils due to lack of precipitation, high temperatures, and dry air. These events are also associated with reduced preparation, response, and management time windows before and during drought, exacerbating their detrimental impacts on people and food systems. Improvements in actionable information for flash drought management are informed by atmospheric and land surface processes, including responses and feedbacks from vegetation. Phenologic state, or growth stage, is an important metric for modeling how vegetation modulates land–atmosphere interactions. Reduced stomatal conductance during drought leads to cascading effects on carbon and water fluxes. We investigate how uncertainty in vegetation phenology and stomatal regulation propagates through vegetation responses during drought and non-drought periods by coupling a land surface hydrology model to a predictive phenology model. We assess the role of vegetation in the partitioning of carbon, water, and energy fluxes during flash drought and carry out a comparison against drought and non-drought periods. We selected study sites in Kansas, USA, that were impacted by the flash drought of 2012 and that have AmeriFlux eddy covariance towers which provide ground observations to compare against model estimates. Results show that the compounding effects of reduced precipitation and high vapor pressure deficit (VPD) on vegetation distinguish flash drought from other drought and non-drought periods. High VPD during flash drought shuts down modeled stomatal conductance, resulting in rates of evapotranspiration (ET), gross primary productivity (GPP), and water use efficiency (WUE) that fall below those of average drought conditions. Model estimates of GPP and ET during flash drought decrease to rates similar to what is observed during the winter, indicating that plant function during drought periods is similar to that of dormant months. These results have implications for improving predictions of drought impacts on vegetation. 
    more » « less
  2. We use a land surface hydrology model with a predictive phenology model to analyze changes in how vegetation and the atmosphere interact during extreme drought events known as flash droughts. Included here are model results accompanying a manuscript to be submitted to a journal for peer review. The model outputs include soil moisture, root water uptake, evapotranspiration, gross primary productivity, stomatal conductance, infiltration, leaf area index, and the fraction of photosynthetically active radiation. We find that plants nearly halt water and carbon exchanges and limit their growth during flash drought. 
    more » « less
  3. Soil moisture feedbacks that initiate, enhance, or suppress convection initiation and precipitation are important components of regional hydroclimatology. However, soil moisture feedbacks and the processes through which they operate are notoriously challenging to observe and study outside of model environments. In this study, we combine a climatological assessment of event frequency-based measurements of soil moisture-precipitation coupling in the central United States with a process-based analysis of the mechanisms by which wet- and dry-soil feedbacks may operate in the region. We use the Thunderstorm Observation by Radar algorithm to identify the location of convection initiation, circumventing the issue of using precipitation accumulation as a proxy for convection initiation. Results show substantial spatial variability in the climatological sign and strength of soil moisture-precipitation coupling in the central United States, including regions that exhibit signs of both wet- and dry-soil feedbacks. Within the regions with the strongest feedback signals, we find consistently strong coupling between soil moisture and the partitioning of surface heat flux, and strong coupling between surface heat flux—particularly sensible heat flux—and diurnal change in planetary boundary layer height. In all three regions assessed, the process-based metrics confirmed the potential of wet- and/or dry-soil feedbacks leading to convection initiation 
    more » « less
  4. null (Ed.)
    Abstract Skillful subseasonal prediction of extreme heat and precipitation greatly benefits multiple sectors, including water management, public health, and agriculture, in mitigating the impact of extreme events. A statistical model is developed to predict the weekly frequency of extreme warm days and 14-day standardized precipitation index (SPI) during boreal summer in the United States (US). We use a leading principal component of US soil moisture and an index based on the North Pacific sea surface temperature (SST) as predictors. The model outperforms the NCEP’s Climate Forecast System version 2 (CFSv2) at weeks 3-4 in the eastern US. It is found that the North Pacific SST anomalies persist several weeks and are associated with a persistent wave train pattern (WTZ500), which leads to increased occurrences of blocking and extreme temperature over the eastern US. Extreme dry soil moisture conditions persist into week 4 and are associated with an increase in sensible heat flux and decrease in latent heat flux, which may help maintain the overlying anticyclone. The clear sky conditions associated with blocking anticyclones further decrease soil moisture conditions and increase the frequency of extreme warm days. This skillful statistical model has the potential to aid in irrigation scheduling, crop planning, reservoir operation, and provide mitigation of impacts from extreme heat events. 
    more » « less
  5. Abstract Soil moisture feedbacks that initiate, enhance, or suppress convection initiation and precipitation are important components of regional hydroclimatology. However, soil moisture feedbacks and the processes through which they operate are notoriously challenging to observe and study outside of model environments. In this study, we combine a climatological assessment of event frequency‐based measurements of soil moisture‐precipitation coupling in the central United States with a process‐based analysis of the mechanisms by which wet‐ and dry‐soil feedbacks may operate in the region. We use the Thunderstorm Observation by Radar algorithm to identify the location of convection initiation, circumventing the issue of using precipitation accumulation as a proxy for convection initiation. Results show substantial spatial variability in the climatological sign and strength of soil moisture‐precipitation coupling in the central United States, including regions that exhibit signs of both wet‐ and dry‐soil feedbacks. Within the regions with the strongest feedback signals, we find consistently strong coupling between soil moisture and the partitioning of surface heat flux, and strong coupling between surface heat flux—particularly sensible heat flux—and diurnal change in planetary boundary layer height. In all three regions assessed, the process‐based metrics confirmed the potential of wet‐ and/or dry‐soil feedbacks leading to convection initiation. 
    more » « less
  6. Flash droughts are characterized by a period of rapid intensification over sub-seasonal time scales that culminates in the rapid emergence of new or worsening drought impacts. This study presents a new flash drought intensity index (FDII) that accounts for both the unusually rapid rate of drought intensification and its resultant severity. The FDII framework advances our ability to characterize flash drought because it provides a more complete measure of flash drought intensity than existing classification methods that only consider the rate of intensification. The FDII is computed using two terms measuring the maximum rate of intensification (FD_INT) and average drought severity (DRO_SEV). A climatological analysis using soil moisture data from the Noah land surface model from 1979–2017 revealed large regional and interannual variability in the spatial extent and intensity of soil moisture flash drought across the US. Overall, DRO_SEV is slightly larger over the western and central US where droughts tend to last longer and FD_INT is ~75% larger across the eastern US where soil moisture variability is greater. Comparison of the FD_INT and DRO_SEV terms showed that they are strongly correlated (r = 0.82 to 0.90) at regional scales, which indicates that the subsequent drought severity is closely related to the magnitude of the rapid intensification preceding it. Analysis of the 2012 US flash drought showed that the FDII depiction of severe drought conditions aligned more closely with regions containing poor crop conditions and large yield losses than that captured by the intensification rate component (FD_INT) alone. 
    more » « less